对陶瓷纤维具有侵蚀作用的几种化学物质包括:氟、氟化物、钒及其他重金属、磷酸、强碱等。
(1)氟和氟化物。毫无疑问,氟对陶瓷纤维的腐蚀性最强。在100℃以下,氟和水与陶瓷纤维的反应将对纤维结构产生极大的破坏。即便是在较低的浓度下,氢氟酸也会首先与氧化铝反应,形成AIF,和AIF3,H20,导致纤维结构的严重破坏。氢氟酸最容易与SiO2反应。在较低的温度下(980℃以下),富氟的环境有可能促使低温重结晶,进而导致纤维结构的轻微破坏。在出现大量重结晶的温度下,氟有可能在纤维表面形成反应物,从而引起纤维结构的变化并在纤维的表面明显形成一个薄的硬壳层。氟与所有的硅酸铝材料反应,包括与莫来石反应。在与氟反应后,反应物常常气化,使得陶瓷纤维损毁的原因很难确定。
(2)钒与其他重金属。劣质燃油中存在的钒和其他重金属在燃烧时会侵蚀陶瓷纤维。这种腐蚀物质来自于五氧化二钒(V203),这种物质在常温下是固体,但在约690℃时熔化。这种液体渣吸附于纤维的孔隙结构中并与纤维中的硅酸铝产生反应。反应过后,在纤维衬的热面将形成一硬化壳。一段时间以后,硬化壳会从纤维毯的未反应纤维层上脱落,化学反应会继续在暴露的新鲜纤维表面上进行。反应速率取决于以下因素,如:重金属浓度、时间,材料的气孔率以及温度。并没有一个界定反应产生与否的明确的浓度界线。通常,是长时间较高的重金属浓度使得耐火材料的寿命缩短。五氧化二钒在温度高于690℃时会与纤维发生反应,但反应速度受以上因素的影响。随着化学反应的不断进行,定期更换热面材料是有必要的。特别要注意的是,五氧化二钒对纤维造成侵蚀,但以碱性化合物存在的钒会在很低的温度下形成更高腐蚀性的渣,导致陶瓷纤维更快降级。通常情况下,重金属含量高的燃料也同时含碱。
(3)硫和硫酸。陶瓷纤维具有良好的抗硫酸侵蚀能力,但在极少数情况下也会产生某些微小的化学反应,较典型的反应产物为硫酸铝(Al2(SiO4)3)或硫酸铝水化物。一般来说,这种反应不会造成纤维的损毁。事实上,金属铆固件的腐蚀是需要特别关注的。应当采用沥青涂层或不锈钢膜以保护金属铆固件,或确保金属铆固件所处温度高于硫酸的露点温度,一般为121~177℃。陶瓷纤维在铁(Fe) 和硫酸(H2S04) 共存的情况下,会产生氧化铁-氧化铝-氧化硅复合硫酸盐,这种化合物将会“溶解”铆固件和炉壳,使铆固件变成类似灰色岩石状的物质。通常情况下,纤维与硫接触后会变黄,一般认为硫在纤维表面的沉积会对在980℃左右的纤维结晶过程产生影响。
硫与陶瓷纤维的反应,一般以不连续状分布于纤维衬表面,这种反应被认为使得纤维表面形成一均匀粉化层,在机械力(如振动)或气流冲刷的情况下,导致纤维衬热面炉衬材料的脱落。这些从热面逐渐损失的材料将使得新表面暴露出来,新的表面很容易被进一步侵蚀,从而使前述反应过程自我重复。只有在长时间使用后,这些反应才会对炉衬整体产生实质性破坏。对于层铺结构的纤维衬来说,定期更换处于热面的纤维毯可能是必须的。如采用的是纤维组件,则可考虑在纤维表面喷一层陶瓷涂层材料。
(4)碱侵蚀。碱对陶瓷纤维的侵蚀被认为主要取决于时间和温度两个因素。碱金属与纤维反应形成低熔化合物使纤维产生收缩或烧结,最终导致纤维衬的损毁。化学物质如V203、SO3等的存在会加快这种损毁行为,更早地导致炉衬损坏。碱侵蚀一般出现在纤维衬的热表面,反应后形成硬壳或“渣”层。随着反应的深入,纤维表层被破坏而失去作用,新的表面暴露后又开始承受持续的化学侵蚀。
(5)其他酸侵蚀。陶瓷纤维一般被认为对盐酸(HCl)、醋酸(CH3COOH)和硝酸具有良好的抵抗性能,低温下能抵抗磷酸的侵蚀。然而,当高温下磷酸铝形成时,纤维会产生明显的收缩。在温度高于540℃的情况下,尽量避免陶瓷纤维与磷酸接触。